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Interface problems as motivation for CutFEM 2/15

Example of interface problem: two-phase fluid flow. The interface is the internal boundary
separating the phases.

We assume an accurate numerical representation of the interface.

[2]

CutFEM is an alternative to FEM where the mesh does not need to conform to the interface,
and/or possibly also domain boundaries.

We call the mesh the background mesh.

[2]Residual-based a posteriori error estimation for immersed finite element methods. Journal of Scientific Computing , 81,
2019.
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Consider the following Darcy interface problem. For data � ; �¡; �; f ; p0; p̂; g

we look for solutions u; p to

�u¡rp = f in 

divu =g in 


p =p0 on @
p
u �n =u0 on @
u
[p] = �¡fu �ng on ¡
fpg = p̂+ ��¡[u �n] on ¡
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The Darcy interface problem weak formulation reads, for data � ; �¡; �; f ; p0; p̂; g:

Find (u; p)2Hu0;@
u
div (
)�L2(
) such that

a(u;v)+ b(v; p)=F (v) for all v 2H0;@
u
div (1)

b(u; q)=G(q) for all q 2L2(
) (2)

a(u;v)=
Z



�u �v+
Z
¡

�¡fu �ngfv �ng

+
Z
¡

��¡[u �n][v �n]

b(v; p)= ¡
Z



div v p

F (v)=
Z



f � v¡
Z
@
p

p0v �n¡
Z
¡

p̂ [v �n]

G(q)= ¡
Z



gq

[1]A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM: Mathematical
Modelling and Numerical Analysis , 2012.
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@Wu
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a(uh;vh)+ b(vh; ph)=F (vh)

b(uh; qh)=G(qh)

¡!Aû= b ) û=A n b

�O(hk+1) convergence
� Pointwise exact divergence if g 2Qk(
)
�Well conditioned linear system
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CutFEM in a nutshell 6/15

From the background mesh 
h we define two active meshes 
h;i which have overlap at the
interface. On each active mesh we construct a standard FEM space Vh;i.

The CutFEM functions uh= (uh;1; uh;2) are thus defined as elements of the product space
Vh;1�Vh;2 , but each component is only ever integrated on its part of the physical domain 
i.
The solution to a problem is then the R-valued function

ûh=
n
uh;2; in 
2

uh;1; in 
1
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Unfitted elements K get intersected by the interface ¡, and the total support (of some) of the
basis functions associated to K can get arbitrarily small.
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Unfitted elements K get intersected by the interface ¡, and the total support (of some) of the
basis functions associated to K can get arbitrarily small.

The resulting system matrix can accordingly be arbitrarily ill-conditioned.

sa(w;v) =
X

i2f1;2g

X
j=0

k+1 X
F2Fh;i

�bh
2j+1

Z
F

[Djw][Djv]

sb(w; r) =
X

i2f1;2g

X
j=0

k X
F2Fh;i

�bh
2j+1

Z
F

[Djdivw][Djr]

[4]A divergence preserving cut finite element method for Darcy flow. ArXiv:2205.12023 , 2022.
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Let RTk :=RTk(
h;1)�RTk(
h;2); Qk :=Qk(
h;1)�Qk(
h;2).

Find (uh; ph)2RTk�Qk such that

A(uh;vh)+B(vh; ph)= F(vh) for all vh2RTk (3)
B0(uh; qh)= G(qh) for all qh2Qk (4)

A(w;v)= a(w;v)+
Z
@
u

�uw �nv �n+ sa(w;v)

B0(w; r)= b(w; r)¡ sb(w; r)

B(w; r)= B0(w; r)+
Z
@
u

w �n r

F(v)= F (v)+
Z
@
u

�uu0v �n

The terms sa and sb are ghost penalty stabilization terms used to control the stability of the
method and the condition number of the resulting linear system.

Further, sb is designed so that also the divergence condition is satisfied.
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Example 1: interface problem, boundary conditions (BC) @
= @
p, divergence inside Q0

[4]A divergence preserving cut finite element method for Darcy flow. ArXiv:2205.12023 , 2022.
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Example 1: divergence is in Q0 so we expect an error of order machine precision

Plotted above is k divuh¡ gk1.

[4]A divergence preserving cut finite element method for Darcy flow. ArXiv:2205.12023 , 2022.
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Example 2: fictitious domain (no interface) ¡= ;, BC @
= @
u, divergence outside Qk

[4]A divergence preserving cut finite element method for Darcy flow. ArXiv:2205.12023 , 2022.
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Example 2: divergence is not in Qk for any k � 0 so the best we can hope for is optimal
convergence order k+1 in k�k1.

RT0 BDM1 RT1
[4]A divergence preserving cut finite element method for Darcy flow. ArXiv:2205.12023, 2022.
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Theorem 1. Let g 2 Qk(
) \ Ck(Fh;1) \ Ck(Fh;2), the space of piecewise discontinuous
polynomials which have k continuous derivatives over the stabilization faces. Then the CutFEM
solution uh2RTk to (6)+(7) satisfies

divuh= g

Proof. Consider (7): for all qh2Qk

Z



divuh qh+
X

i2f1;2g

X
j=0

k X
F2Fh;i

�bh
2j+1

Z
F

[Dn
j divuh][Dn

j qh]¡
Z



gqh=0:

Since divRTk�Qk we can choose qh= divuh¡ g. Then,

0=
Z



(divuh¡ g)2+
X

i2f1;2g

X
j=0

k X
F2Fh;i

�bh
2j+1

Z
F

[Dn
j (divuh¡ g)]2 ,

0= kdivuh¡ gk
2+sp(divuh¡ g; divuh¡ g) & k divuh¡ gk
h2 >0

Consequently divuh= g since k�k
h is a norm for Qk: �
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For the future, possible directions:

-The method can be extended to Stokes equations (we are currently working on this.)

-Well-posedness proofs (we have almost completed this.)

�Navier-Stokes equations, moving interfaces

�Benchmark studies, comparison with other methods etc.

�Adapting the method to coupled problems which are not toy problems
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Questions?
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